Integrated assessment of atmospheric emissions of ammonia and green house gasses, and nutrients at a landscape level

Hans Kros, Wim de Vries, Gerard Velthof, Edo Gies and Arjan Hensen (ECN)

Environmental ambitions Noordelijke Friese Wouden Aim study

Noordelijke Friese Wouden (NFW)

Farmers joined in an environmental cooperative
Agreement with government to achieve environmental targets at landscape level
Targets to be reached in 5 -10 years
Freedom regarding measures as long as the environmental targets are attained

Environmental ambitions NFW related to

Ground- and surface water

- NO₃ ground water < 50 mg l⁻¹
- N in surface water < 2.2 mg l⁻¹

Nature

- Emission ceiling of 2 kton NH₃-N derived from the NEC of NH₃ and the present ratio of NFW versus national emissions (2010)
- Only 10% exceedance of critical N loads per nature target type; 90% protection of nature (2030)

Ecological requirements nature

Nature target types

Critical N loads (mol N ha-1 jr-1)

Aim study

- A model (INITIATOR2) based integrated assessment of the
 - Environmental status of the NFW area for the year 2004
 - Impacts of alternative management measures on the environmental status

NitroEurope-IP task

- Deliver detailed agricultural input data for NitroScape
- Model comparison (Initiator2 Integrator NitroScape)

Model calculations to assess present (year 2004) environmental status

Modelling approach: flowchart of INITIATOR2

N application by manure and fertilizer 2004

N in Animal manure

Emission of ammonia and nitrous oxide 2004

NH₃ emission (kg NH₃-N ha⁻¹)

N_2O emission (Kg N_2O -N ha⁻¹)

N concentrations in groundwater

Exceedance critical N loads

Effects of measures

<u>Measures</u>

Reluctance to the application of injection of animal manure, because of its negative impacts on soil fauna and soil structure

Alternative, the –presently forbidden- use of above ground manure spreading:

- Under favourable weather conditions
- In combination with low protein feeding
- Reduced use of N fertilizer

Scenarios

0	Reference (2004)
1	Low protein feeding
2	Low protein feeding + Manure spreading 68%
3	Low protein feeding + Manure spreading 35%
4	Low protein feeding + Manure spreading 35% + ≤ 100 kg N fertilizer

Effects of measures

NH₃ emission in kton NH₃-N

Effects on the exceedance of critical N loads

	Deposition N	Exceedance
	Mol N /ha	%
Present situation	1687	39.1
Low protein feeding+ manure spreading 35%	1657	39.1
Low protein feeding+ injection 10-12%	1562	38.0
NH ₃ emission NFW = 0	1260	12.0

Effects on NH₃ and N₂O emissions and NO₃

Aspect	Present	Low protein feeding and manure spreading 35%
NH ₃ emission (kton N)	2.2	2.0
N ₂ O emission (kton N)	0.46	0.35
Exceedance NO ₃ limit (%)	5.7	2.7

Future work within NitroEurope

Model comparison / validation

Effect of using low resolution data

Conclusions

Present situation:

- NH₃ emissions exceed NFW target for 2010: 10%.
- Area exceeding NO₃ concentration: 6%
- Low protein feeding and above ground spreading under favourable weather conditions lead to slightly lower NH₃ emissions close to NFW target for 2010
- Measures also lead to a reduction in N₂O emissions and N leaching/runoff to ground and surface water

Conclusions

- Exceedance critical N deposition is presently 39% of the area
- Low protein feeding hardly reduces this area (38%), even though NH₃ emission is reduced by 20%!
- At no NH₃ emissions in NFW the target of 10% exceedance is not achievable (12%)
- "Spatial abatement" strategies, such as buffer zones in the landscape or effect oriented measures are needed to reach the goals

Thank you

© Wageningen UR

