

Nitrogen flow modelling: lessons from the EAGER project

Harald Menzi and Beat Reidy, Swiss College of Agriculture (SHL), Switzerland **Ulrich Dämmgen**, Federal Agric. Res. Cent., Inst. of Agroecology, Germany Helmut Döhler and Brigitte Eurich-Menden, Association for Technology and Structures in Agriculture (KTBL), Germany **Frits van Everts**, Plant Research International, Netherlands **Nick Hutchings**, Danish Institute of Agricultural Sciences (DIAS), Denmark Harry Luesink, Agricultural Economics Research Institute (LE), Netherlands **Tom Misselbrook**, Inst. of Grassland and Environmental Research (IGER), UK **Gert-Jan Monteny**, Wageningen UR, Agrotech. and Food Innovations B.V, Netherlands **Lena Rodhe**, Swedish Inst. of Agricultural and Environmental Engineering (JTI), Sweden **J Webb**, AEA Energy&Environment, UK

EAGER: European Agricultural Gaseous Emissions Inventory Researchers Network

Background

- Accurate agricultural NH₃ emission inventories are required for reporting within the framework of the Gothenburg Protocol
- to allow a co-ordinated implementation of the Protocol, different national inventories should be comparable
- a core group of emission inventory experts initiated EAGER to
 - achieve a detailed overview of present best available inventory techniques
 - compile and harmonize the available knowledge on emission factors (EFs) for nitrogen (N) flow emission calculation models

• first key task: comparison of models

- how far do results agree; reasons for differences?

University of Applied Sciences Swiss College of Agriculture

Approach for comparison of models

• Six N-flow models from CH, DE, DK, NL, UK

Feed	S	Model	Country	Objectives of the model
	3	DYNAMO	Switzerland	Estimation of the magnitude of NH ₃ losses at the farm and national level; national emission inventory, evaluation of abatement potential
N Excreted	N Excreted	DanAm	Denmark	Estimation of the magnitude of NH ₃ losses at the national level ; national emission inventory
Grazing	Housing / NH ₃	GAS-EM	Germany	Estimation of NH ₃ and other N losses at the national level ; national emission inventory
	L	MAM	Netherlands	Manure policy analyses and estimation of NH ₃ emissions at the farm and national level
TAN	Manure / NH ₃	FARMMIN	Netherlands	Ex-ante evaluation of the effect of management on profitability and nutrient losses.
	Storage	NARSES	United Kingdom	Estimation of the magnitude, spatial distribution and time course of agricultural NH_3 emissions at the national level; national emission inventory, calculation of cost curves
	Application / NH ₃			

Reasons for approach taken

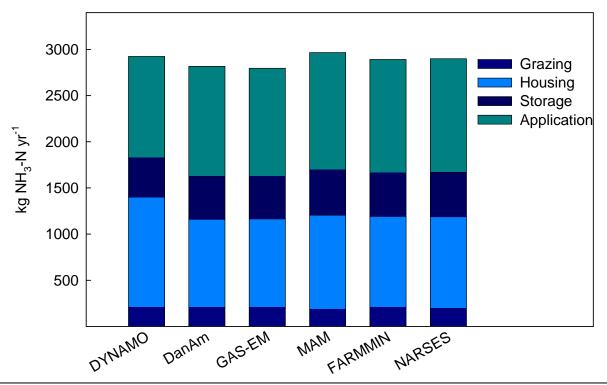
- Comparing emission inventories on the basis of EFs and N excretion rates can identify differences among models but not the respective reasons. The reasons can be divided into 4 main types:
 - -(1) errors
 - (2) differences in agricultural practice
 - (3) differences in the model structure
 - (4) differences in model parameterisation

Approach to comparison of models (2)

• Three levels of model standardizations

Scenario	Nitrogen excretion [kg yr ⁻¹ N]	Emission factors		
FF	Fixed ^a	Fixed ^a		
FN	Fixed ^a	National ^b		
NN	National ^b	National ^b		
^{a)} Same value used in all models				

^{b)} Model-specific values used


• A simplified dairy cow and pig scenario (only dairy scenario presented here)

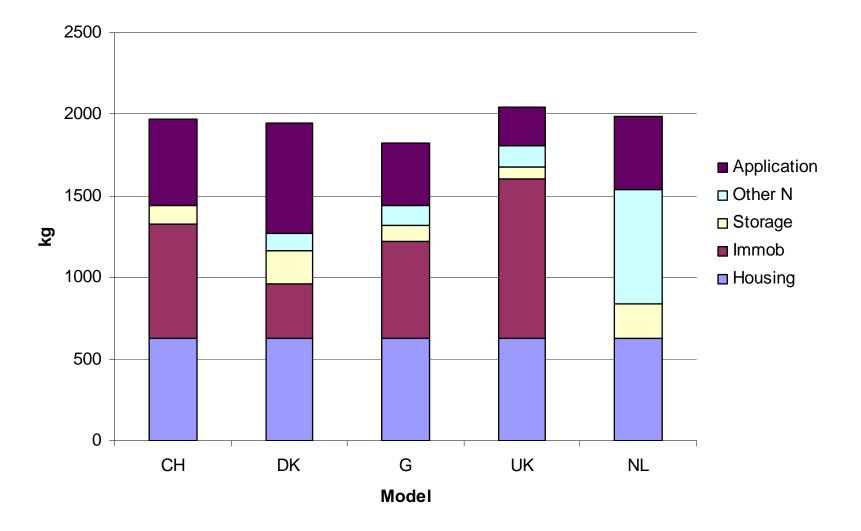
Results and discussion: FF scenario

- Very similar estimates of the NH₃ emissions for the FF scenario
 → underlying N flows of the different models are highly comparable
- Reasons for differences are clear

Reasons for differences

- The underlying N flows of the different models are similar.
- the small differences can be explained by
 - slight differences in the assumptions concerning emissions during the grazing period
 - partitioning of excretal N between grazing and animal housing; emissions in houses and manure stores when cattle are largely outside
 - inclusion of additional sources (e.g. hard standings)
 - and by the inclusion of mineralisation and denitrification (GAS-EM)

Comparison of litter-based manures


- Two scenarios for litter-based systems were run

 for beef cattle and for broilers
- FF, FN and NN scenarios as for slurry comparison

Results of comparison for litter-based manures

- Results of the FF scenario for beef cattle produced large differences in the estimate of NH₃ emissions (±32% of the mean)
- these differences arose from the different approaches to TAN immobilization, other N losses and mineralization in the models
- as a result of those differences estimates of TAN available at spreading differed by a factor of almost 4

Lessons learned

- In the congruency testing some minor weaknesses were identified in all the models tested
- the debate increased awareness and consensus of available data and the importance of some processes (e.g. mineralisation)
- the congruency exercise has led to a better harmonisation of the structure and function of the models tested
- in some cases, the consensus relied on work that was only available in reports to funding bodies or in languages other than English
 - highlighting the need for the collation and publication of information in a form available to an international readership.

University of Applied Sciences Swiss College of Agriculture

Lessons learned

- Complete harmonisation of models was not considered desirable
- the relative importance of the processes involved may vary among countries, due to different agricultural practices and natural conditions
- the modeller is always at the mercy of the statistical data available as model input
- there is therefore little point in creating a model that uses activity data that are likely to remain unavailable for the foreseeable future.

Inferences for future work

- Immob. and denitrif. also depend on the manure C:N ratio
- hence advantages to including C in mass flow models
- this would also provide an integrated model for the estimation of emissions of CH₄, NMVOCs and CO₂
 - estimation of the latter would provide an estimate of mass loss to enable calculation of the N and TAN concentrations in litter-based manures
 - at present output can only be checked by means of the N:TAN ratio prior to storage and spreading
 - checking estimates of concentrations as well as ratios against measurements would enable more thorough output validation

Achievements of EAGER

- Thorough and critical analysis of models and intensive exchange between participants
 - Weaknesses of all models recognized and improved → all partners and models profited from the excercise
 - Starting harmonization between calculation procedures
- Evidence of good comparability between N-flow models
 - Indication that models are following the same general procedure and are based on comparable data and assumptions
 - Inter-country comparisons are possible
 - It is possible to study the effect of different framework conditions and management
- One generalized model across Europe is hardly realistic because of differing framework conditions, structure, management

But further harmonization is possible

© SHL / 19.3.2007/Mz,Ry

Achievements of EAGER (2)

- Inputs for UN/ECE expert groups
 - No overlap thanks to partly common membership
 - Nucleus group for advanced solutions
 - Fast exchange of new knowledge
 - more focused work possible than in large groups with varying membership
- Contribution towards further harmonization of emission inventory calculation procedures and improved emission data
 - Tools for countries only starting with inventory work (long term only)
- Core group of scientists that can also provide inputs to research projects, policy questions, extension service tools etc.

Results and discussion: FF scenario

come to see the poster and have a more detailed discussion

- Differences more pronounced when using national emission factors and/or national N excretion rates (FN and NN scenarios)
- Variation primarily result from distinct national emission factors and N excretion rates which reflect the specific livestock and manure management systems and climatic conditions