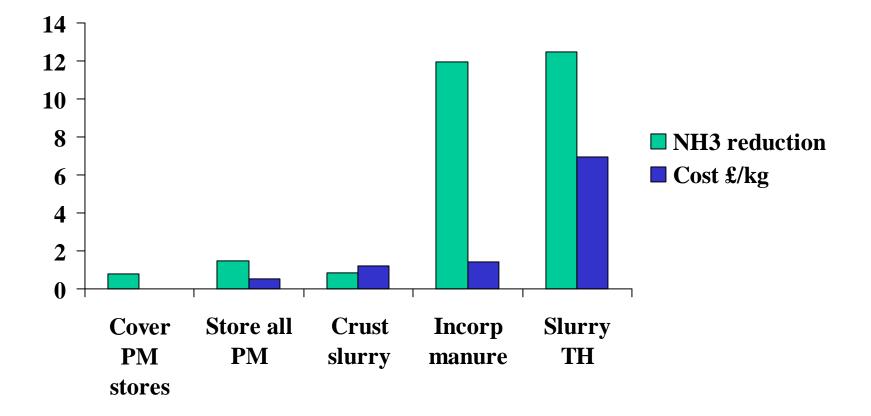
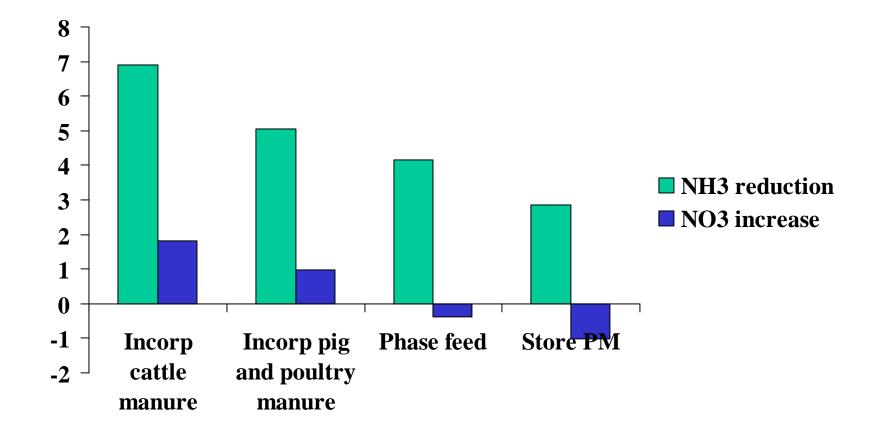
Prioritisation of ammonia abatement measures, their costs and impacts on nitrate leaching and nitrous oxide emissions using the NARSES model

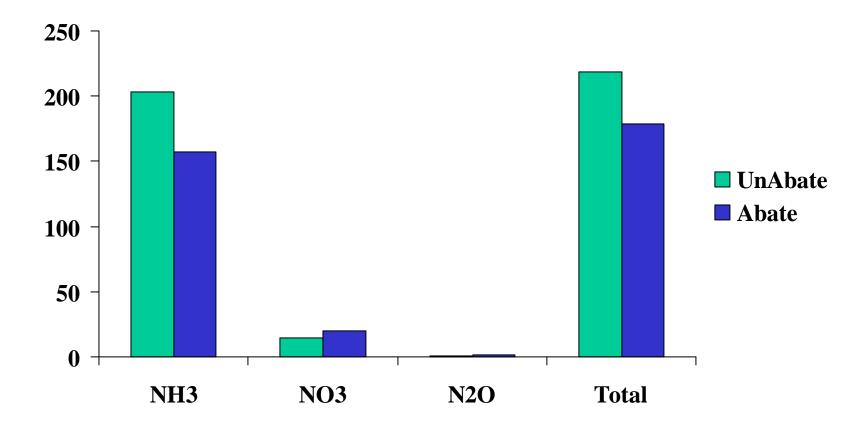

> J Webb (AEA), SG Anthony, S Humphries (ADAS)

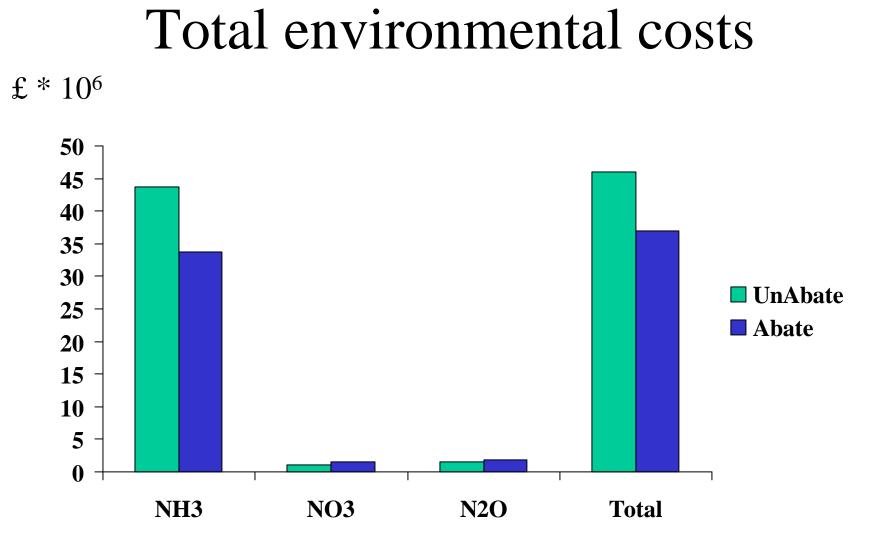
Materials and Methods


- NARSES uses a mass-flow approach to identify the most cost-effective means of reducing ammonia (NH₃) emissions from agriculture

 and to make unbiased estimates of the total costs
- NARSES output is now linked to the MANNER model
 - enabling calculation of the impacts of NH_3 abatement on NO_3^- leaching and N_2O emission

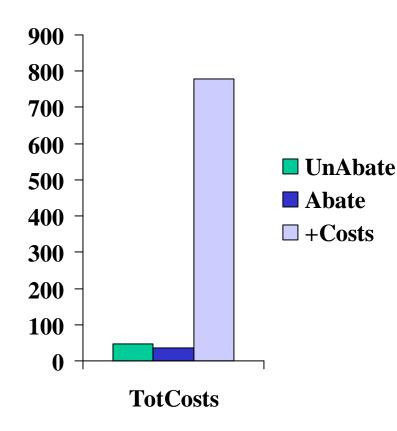
Ammonia reduction and unit cost


kg *10³ Impact on nitrate leaching



Nitrous oxide emissions

- The increase in N₂O emissions was never more than 2% of the NH₃-N conserved
- phase feeding and storing manures decreased N₂O emissions following manure spreading
- total N_2O emissions were little changed by the adoption of NH_3 abatement techniques


Total N losses from manure t* 10³

Costs including total abatement costs

 $f{t} * 10^{6}$

- Based on the environmental costs used
- a total NH₃-N abatement of only 10.45 t*10³ justified
- but the environmental costs need updating

Conclusions

- At the national scale, UK NH₃ emissions can be conserved without large increases in NO₃⁻ leaching
- no method of abatement led to more than 30% of the NH₃-N conserved being lost as NO₃⁻
- some NH₃ abatement methods also *decreased* emissions of both NO₃-and N₂O
- in those catchments with the greatest potential for NO₃⁻ leaching, careful consideration will still need to be given to the implementation of an NH₃ abatement policy

Conclusions

- A policy to reduce NH₃ emissions could lead to a net decrease in N releases to the environment
- and would reduce the overall impacts to the environment

Results

Ammonia abatement

- Covering poultry manure stores
- allowing cattle slurry lagoons to crust
- store all poultry manure prior to spreading
 - simple and inexpensive to adopt
 - each produce only small (< 1.0 x 10³ t or less) reductions in NH₃ emission
- rapid incorporation of manures and slurries gave greater reductions

reasonably cost-effective

• apply slurry to grassland by trailing shoe

Impact on nitrate leaching

- Of the NH₃-N conserved (46 x 10³ t), c. 5.3 x 10³ t, was calculated to be lost as NO₃⁻-N
- an increase of c. 37% in the amount of $NO_3^$ leached following the application of livestock manures
- but only c. 4% of current total NO₃⁻ leaching in the UK
- in some catchments, vulnerable to leaching, increase in NO₃⁻ losses will be greater and be cause for concern.

Impact on nitrate leaching

- Increases in NO₃⁻ leaching occurred following measures which conserved NH₃-N as TAN
- two types of measure decreased NO₃⁻ leaching as well as NH₃ emission
 - phase feeding of pigs would be expected to decrease all forms of N loss
 - storing all FYM and poultry manure before spreading
 - storage emits c. 12-41% of TAN entering the store as N₂O or N₂ and hence less TAN remains when the manure is applied to land than would have been the case if the manure was spread when 'fresh'.