

Energy research Centre of the Netherlands

Indirect N₂O emission due to atmospheric N deposition a case study for The Netherlands

Albert Bleeker & Hugo Denier van der Gon

Content

- Introduction
- Indirect N₂O emission from agricultural nitrogen
- Discussing the IPCC methodology
- Conclusions

- Nitrous oxide (N_2O) is a potent greenhouse gas
- Formation through natural processes of nitrification/denitrification in soils and aquatic systems
- Nitrification and denitrification will occur simultaneously in many ecosystems
- Both processes are usually coupled

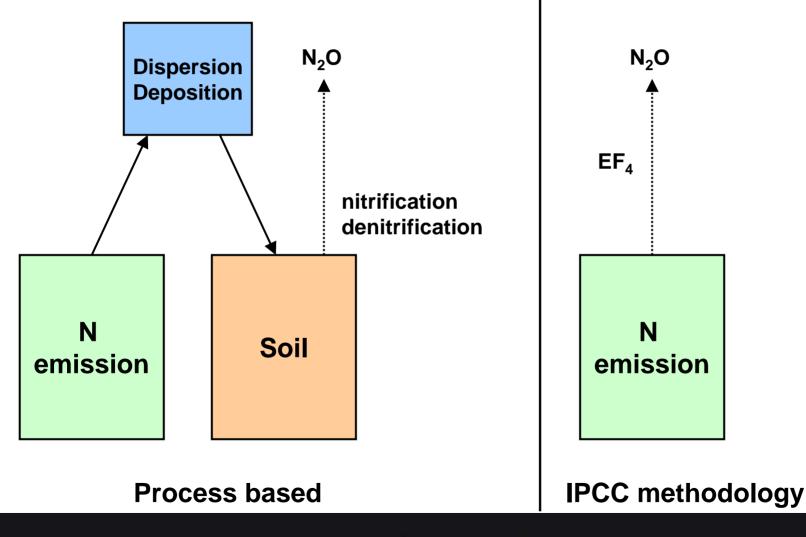
- Anthropogenic release of nitrogen compounds in the environment results in increased N₂O emission to the atmosphere
- Amounts of N lost to the environment due to agr. activities are not trivial. In general:
 - 40-60 % taken up by crops
 - some may be immobilized in soil N reserves
 - 10-40 % lost to the environment

- UNFCCC (United Nations Framework Convention on Climate Change) request reporting of both direct and indirect N₂O emissions
- IPCC (Intergovernmental Panel on Climate Change) treats the pathways separately and provides guidelines how to estimate both emission types
- Country-specific methodologies are possible, but they have to be transparent, properly documented and/or described in peer reviewed literature

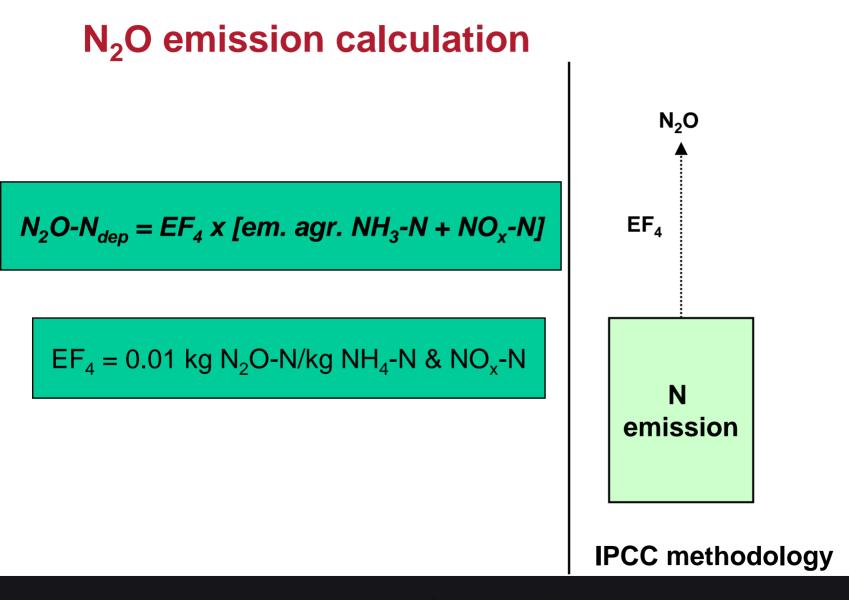
- direct emission N₂O emission emitted from agricultural soils resulting from microbial (de)nitrification of N from fertilizers, animal manure and soil N (EF = 1.25%)
- indirect emission N₂O from other ecosystems (forests, streams, rivers, oceans) resulting from N lost from agricultural soils (nitrate leaching, ammonia volatilization and deposition) (EF = 1%)
- Direct/indirect emission does not refer to timing, but refers to spatial allocation

Indirect N₂O emissions

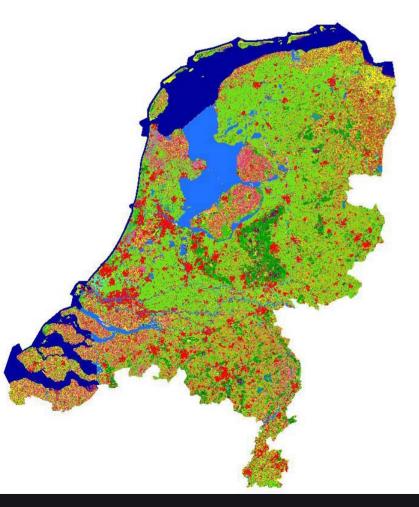
- IPCC only considers indirect N₂O emissions from nitrogen used in agriculture.
- Different pathways for synthetic fertilizer and manure input giving rise to indirect N₂O emissions are:
 - A volatilization and subsequent atm. deposition of NH₃ and NO_x
 - B nitrogen leaching and runoff
 - C human consumption of crops followed by municipal sewage treatment
 - D formation of N_2O in the atmosphere from NH_3
 - E food processing
- D and E of limited importance
- A-C estimation methodologies are proposed by IPCC
- This presentation focuses on methodologies to report and estimate indirect N₂O emissions from the Netherlands for pathway A



Indirect N₂O emissions


- Focus is on the indirect emission of N₂O due to atmospheric N deposition
- Presently this emission is not included in the National inventory report of The Netherlands
- While investigating the IPCC methodology some basic assumptions could be discussed
- The choices made can significantly influence N₂O emissions in the Netherlands, but may also change the way other countries calculate the N₂O emission due to atmospheric deposition

N₂O emission calculation



Agriculture in the Netherlands

- •Highly intensive
- •High N inputs for
 - sustaining high production levelssoil productivity
- •N input ranks among highest in Europe
- •70% of land used for agriculture
- High environmental pressures
 Difficult to meet environmental targets
 nitrate leaching
 ammonia volatilization

N₂O emissions in the Netherlands (in Gg N₂O yr⁻¹)

Source	NIR	NIR	IPCC Default ^{b)}	IPCC CS ^{c)}	IPCC CS ^{c)}
Year	1990	1999	1990	1990	1999
Manure Management	0.7	0.6	5.0		
Agricultural Soils					
Direct soil emissions	21.5	25.0	20.0	17.2	20.5
Indirect emissions	0.0	0.0	17.0	15.3	13.5
Atm. deposition of agricultural NH_3 and NO_x	NE	NE	3.1	2.7	2.4
Agricultural N leaching and run off	RE	RE	13.9	12.6	11.1
Agriculture total (B+D)	22.2 ^{a)}	25.7 ^{a)}	42.1	32.5	34.0

Discussing the IPCC methodology

- review of EF₄
- land use specific N₂O emission
- including other nitrogen sources

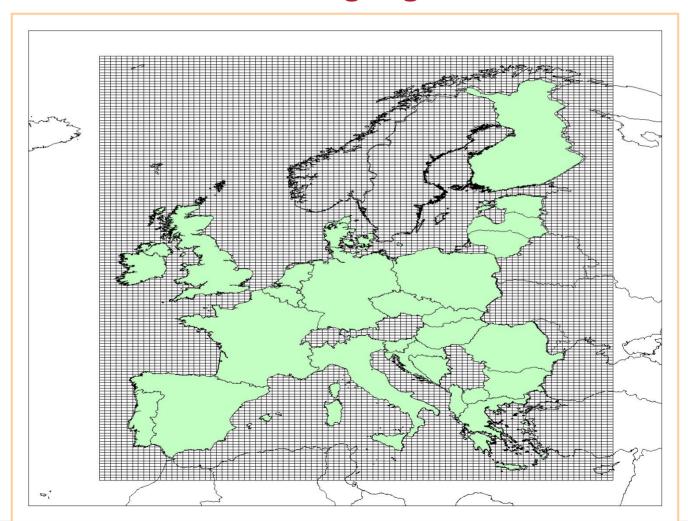
Review of EF₄

- Standard IPCC emission factor is 1%
- Literature review of recent articles showed:
 - -emission factor is land use specific
 - emission will thus depend on ultimate location of deposition
 - best estimate of EF_4 is higher than IPCC standard for each land use type
 - improved estimate of EF_4 would be 0.02 (0.005-0.04) or 2% of N deposition re-emitted as N_2O
 - using this new emission factor increases indirect N_2O emissions due to N deposition by a factor of 2

Land use	Grass, pasture	Arable land	Permanent Crops	Coniferous forest	Deciduous forest	Water	Urban area	Bare Iand	Unidentified
EF _{4_land use}	1.25% ^{a)}	1.25% ^{a)}	1.25% ^{a)}	1.40%	6%	1% ^{b)}	0%	1% ^{b)}	1% ^{b)}

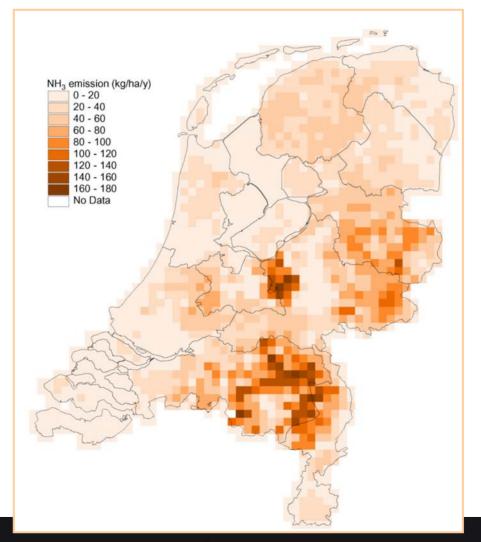
^{a)} Derived from the IPCC emission factor for direct N_2O emission from agricultural soils

^{b)} The IPCC default value for EF₄

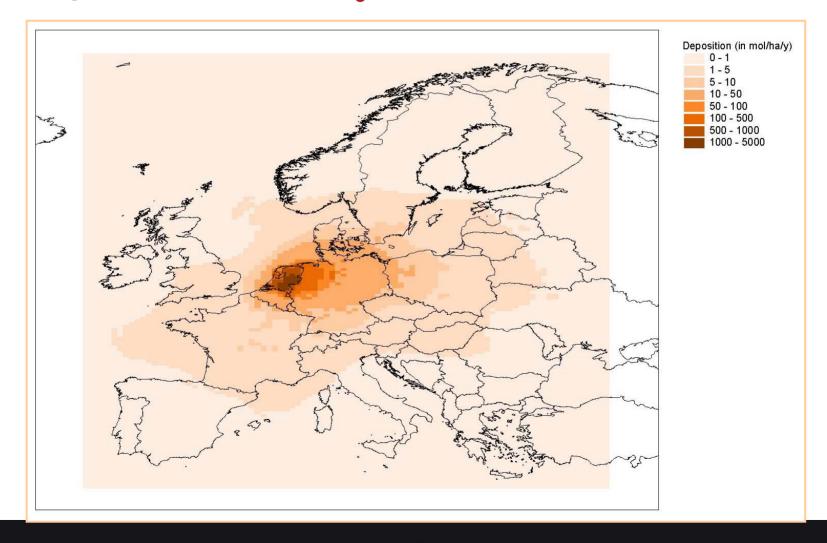


Land use specific N₂O emissions

- Use of land use specific emission factors
- Deposition calculated by means of an atmospheric dispersion and deposition model
- Input:
 - -land use information for Europe (Corine)
 - emission data on agricultural NH_3 for the Netherlands
- Combining calculated deposition, land use information and specific emission factors will result in land use specific N₂O emissions



Modeling region



NH₃ emission for the Netherlands

Deposition due to NH₃ emissions from the Netherlands

Distribution of NH₃ emission from the Netherlands

Land use	N Deposition (Gg N.y ⁻¹)	Fraction of agricultural N emission received (%)
Grass (pastures)	19.8	17
Arable	32.8	29
Permanent crops	3.1	3
Coniferous forest	9.1	8
Deciduous forest	2.1	2
Water_inland	1.4	1
Urban areas	5.9	5
Bare land	1.5	1
Sea	5.1	4
Sub total on identified land use		70
Unidentified Land ^{a)}	2.7	2
Missing (not allocated cells) ^{b)}	7.1	6
Sub total within model domain	90.7	79
Deposited outside of model domain	24.3	21
Total	115 ^{c)}	100

^{a)} Land use data were not available for all countries within the deposition domain.

^{b)} Grid cells that partly contain cells from countries with land use data and partly from countries without land use data cannot be allocated to one particular land use.

^{c)} Equaling the agricultural NH₃ emission according to CCDM (2003).

Land use specific emission scenarios

scen	n Land use description and associated fraction (%) of N input emitted as N ₂ O.					N ₂ O-N emission CORINE area ^{a)}	land use i		ributed to scribed by E	N₂O-N emission deposition domain ^{b)}	Total ^{c)} indirect N ₂ O-N emission	Total ^{c)} indirect N₂O emission			
	Grass ^{f)}	Arable land	Perm. Crops	Con. forest	Dec. forest	Water inland	Urban	Bare	(Gg N yr⁻¹)	No_LU ^{d)}	Sea	Missing ^{e)}	(Gg N	yr ⁻¹)	(Gg yr ⁻¹)
1	1	1	1	1	1	1	1	1	0.48	1	1	1	0.91	1.15	1.80
2	1	1	1	1	1	1	0	1	0.44	1	1	1	0.87	1.11	1.74
3	1.25	1.25	1.25	1	1	1	0	1	0.53	1	1	1	0.96	1.21	1.91
4	2	1.25	1.25	1	1	1	0	1	0.61	1	1	1	1.05	1.32	2.08
5	2	1.25	1.25	3.80	3.80	1	0	1	0.86	1	1	1	1.30	1.64	2.58
6	1.25	1.25	1.25	3.80	3.80	1	0	1	0.78	1	1	1	1.21	1.53	2.40
7	2	1.25	1.25	1.40	6	1	0	1	0.73	1	1	1	1.16	1.47	2.31
8	6	1.25	1.25	1.40	6	1	0	1	1.19	1	1	1	1.63	2.06	3.23
9	1.25	1.25	1.25	1.40	6	1	0	1	0.64	1	1	1	1.07	1.36	2.13
10	1.25	1.25	1.25	1.40	6	0	0	1	0.64	1	0	1	1.07	1.35	2.12
11	1.25	1.25	1.25	1.40	6	2	0	1	0.64	1	2	1	1.08	1.36	2.14

^{a)} Total area covered by the CORINE land use map is 8.5 10⁶ km²

^{b)} Total area covered by the modeled deposition domain is 12.7 10⁶ km²

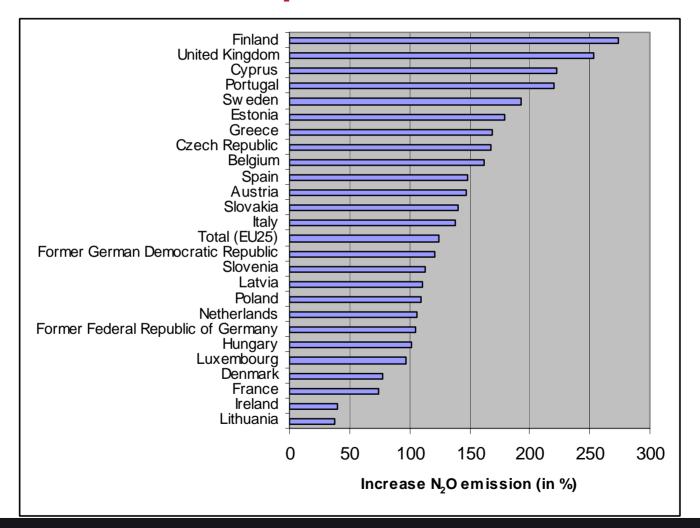
c) Corrected for the 21 % of N emitted which is deposited outside of the modeled deposition domain

^{d)} The No_LU class describes areas that are land but with no land use information in CORINE e.g., Norway, Sweden, Switzerland

^{e)} The area covered by the missing class describes border cells that cannot be allocated to one particular class are partly land partly sea

^{f)} Including unfertilized pastures and natural grass lands

Other nitrogen species


Species	N-emission (Gg N.y ⁻¹)	Estimated resulting indirect N ₂ O-N emissions (Gg N.y ⁻¹) ^{a)}
NOx-N ^{a)}	136	1.36 ^{b)}
NH ₃ -N_agriculture	115	1.15
NH ₃ -N_other	11	0.11 ^{b)}
Total	262	2.62

^{a)} assuming a simple 1% default emission factor in line with IPCC for agricultural sources.

^{b)} not taken into consideration by IPCC.

Other European countries

Conclusions

- Calculating the indirect N_2O emissions using a land use-specific approach and an atmospheric transport and deposition model, resulted in a ~30% higher indirect N_2O emission.
- Higher land use specific emission factors were applied that are higher than the IPCC default.
- 10-15% of the N emitted by The Netherlands is deposited on forests; 80% on other land use – mostly agricultural land.
- The IPCC default emission factors for indirect (1%) and direct (1.25%) N₂O emission from agricultural land should be harmonized, resulting in a more reliable and transparent emission estimation

Conclusions

- This study revealed two issues, which should be subject to discussion in the IPCC process:
 - The IPCC default value for EF_4 appears to underestimate indirect N₂O emissions due to N deposition. Literature review gave an improved estimation of 2% (0.5-4%) compared to 1% (IPCC default).
 - Omission of indirect N₂O emission resulting from nonagricultural anthropogenic N deposition in the current IPCC estimation methodology. Approximately half of the anthr. N emissions are not taken into account (i.e. estimated indirect N₂O emission may potentially increase by a factor of ~2).